- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000001010000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Dufaux, Clarisse (2)
-
Abramian, Sophie (1)
-
Alkilani-Brown, Ezri (1)
-
Bell, Michael M (1)
-
Beucher, Florent (1)
-
Biagioli, Giovanni (1)
-
Blossey, Peter (1)
-
Bony, Sandrine (1)
-
Brito, Ester (1)
-
Capo, Julie (1)
-
Chauvin, Emma (1)
-
Coly, Abdou Aziz (1)
-
Colón-Burgos, Delián (1)
-
Couvreux, Fleur (1)
-
Dawes, Akeem (1)
-
Demiralay, Zekican (1)
-
Douet, Vincent (1)
-
Ducastin, Vincent (1)
-
Dufresne, Jean-Louis (1)
-
Favot, Florence (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The RAPSODI (Radiosonde Atmospheric Profiles from Ship and island platforms during ORCESTRA, collected to Decipher the ITCZ) radiosonde dataset was collected during the ORCESTRA field campaign. It is designed to investigate the mechanisms linking mesoscale tropical convection to tropical waves and to air–sea heat and moisture exchanges that regulate convection and tropical cyclone formation. The campaign began at the Instituto Nacional de Meteorologia e Geofisica (INMG) on Sal on the Cape Verde Islands, continued with ship-based observations aboard the R/V Meteor across the Atlantic, and concluded at the Barbados Cloud Observatory (BCO) in the eastern Caribbean. During the campaign, a total of 624 radiosondes were launched, capturing high-resolution profiles of temperature, humidity, pressure, and winds. This radiosonde dataset, encompassing raw, quality-controlled, and vertically gridded data, is detailed in this paper and offers a valuable resource for investigating the atmospheric structure and processes shaping tropical convection and the intertropical convergence zone (ITCZ). The complete dataset is openly available at ipfs://bafybeid7cnw62zmzfgxcvc6q6fa267a7ivk2wcchbmkoyk4kdi5z2yj2w4.more » « lessFree, publicly-accessible full text available November 20, 2026
-
Risi, Camille; Muller, Caroline; Vimeux, Françoise; Blossey, Peter; Védeau, Grégoire; Dufaux, Clarisse; Abramian, Sophie (, Journal of Advances in Modeling Earth Systems)Abstract Water isotopes are tracers of convective processes and are often used as proxies for past precipitation. These applications require a better understanding of the impact of convective processes on the isotopic composition of water vapor and precipitation. One way to advance this understanding is to analyze the isotopic mesoscale variations during organized convective systems such as tropical cyclones or squall lines. The goal of this study is to understand these isotopic mesoscale variations with particular attention to isotopic signals in near‐surface vapor and precipitation that may be present in observations and in paleoclimate proxies. With this aim, we run cloud resolving model simulations in radiative‐convective equilibrium in which rotation or wind shear is added, allowing us to simulate tropical cyclones or squall lines. The simulations capture the robust aspects of mesoscale isotopic variations in observed tropical cyclones and squall lines. We interpret these variations using a simple water budget model for the sub‐cloud layer of different parts of the domain. We find that rain evaporation and rain‐vapor diffusive exchanges are the main drivers of isotopic depletion within tropical cyclones and squall lines. Horizontal advection spreads isotopic anomalies, thus reshaping the mesoscale isotopic pattern. This study contributes to our understanding of mesoscale isotopic variability and provides physical arguments supporting the interpretation of paleoclimate isotopic archives in tropical regions in terms of past cyclonic activity.more » « less
An official website of the United States government
